If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+32x-16=0
a = 17; b = 32; c = -16;
Δ = b2-4ac
Δ = 322-4·17·(-16)
Δ = 2112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2112}=\sqrt{64*33}=\sqrt{64}*\sqrt{33}=8\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{33}}{2*17}=\frac{-32-8\sqrt{33}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{33}}{2*17}=\frac{-32+8\sqrt{33}}{34} $
| 6u-12u-u-16u=18 | | 5/2x+1/2x=2x+10/2+7/2x | | 14X+3x-X=4x-3x | | 13a+9=2 | | 7/2x+1/2x=2x+9/2+7/2x | | 6+5x=4-3x | | (-5x+4)^3=4/5 | | 10u+8=14 | | 8-4x=6-3x | | 4x^2-33x+65=0 | | 20X36+2x=3X-17 | | 6x+4=-47 | | x-5/3-x+1/4=2x-3/4-1/2 | | 25^x+1=4^2x+2 | | 6m+8=33 | | 2x=-35x-126=6 | | 6x-11=8x-27 | | 6a+9=2 | | x+5/2-3x-4=x/2+23/6 | | |4n+2|=32 | | (8+9+12+x)/4=10 | | (2-9x)^2=6 | | 8a+11=15 | | 5/4/x=25 | | 12a+5=8 | | 0/x=4 | | 4-2(3-x)=7-8 | | 3^2n=27^4 | | 3y-10y=6y+20 | | 1/4y+5=1/9y | | 9^x-27=0 | | 15=2πr |